

Aeternty Python SDK Documentation (aepp-sdk)

Everything you need to know about the Aeternity Python SDK.

How the documentation is organized

A high-level overview of how it’s organized will help you know
where to look for certain things:

	Tutorials take you by the hand through a series of
steps to create a python aepp. Start here if you’re new to Aeternity
application development. Also look at the “First steps” below.

	Topic guides discuss key topics and concepts at a
fairly high level and provide useful background information and explanation.

	Reference guides contain technical reference for APIs and
other aspects of Aeternity SDK machinery. They describe how it works and how to
use it but assume that you have a basic understanding of key concepts.

	How-to guides are recipes. They guide you through the
steps involved in addressing key problems and use-cases. They are more
advanced than tutorials and assume some knowledge of how the Aeternity SDK works.

	Code snippets are various pieces of codes to copy/paste.
They may be useful to find pieces of codes to get stuff done.

First steps

Are you new to the Aeternity SDK? This is the place to start!

	From scratch:

	Installation

	Tutorial:

	Spend transactions

	Deploy a contract

	Claiming a name

	Using Generalized accounts

	The CLI

	How to:

	Coming soon…

	Reference:

	The NodeClient and Config

	The TxObject

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to many common questions.

	Looking for specific information? Try the Index or Module Index

	Search for information in the Aeternity forum [https://forum.aeternity.com], or post a question [https://forum.aeternity.com].

	Report bugs with the Python SDK in our issue tracker [https://github.com/aeternity/aepp-sdk-python/issues].

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Are you new to Aeternity blockchain? Well, you came to the right
place: read this material to quickly get up and running.

	Quick install guide

	Transfer funds

	Working with Contracts

	Claimin a name

	Using Generalized Accounts

	Command Line Interface (CLI)

	Contributing

See also

If you are new to Aeternity blockchain, you may want to start by checking
the website [https://aeternity.com] and the forum [https://forum.aeternity.com].

See also

If you’re new to Python [https://python.org/], you might want to start by getting an idea of what
the language is like.

If you’re new to programming entirely, you might want to start with this
list of Python resources for non-programmers [https://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

If you already know a few other languages and want to get up to speed with
Python quickly, we recommend Dive Into Python [https://diveinto.org/python3/table-of-contents.html]. If that’s not quite your
style, there are many other books about Python [https://wiki.python.org/moin/PythonBooks].

Quick install guide

Before you can use the Aeternity SDK, you’ll need to get it installed.
This guide will guide you to a minimal installation that’ll work
while you walk through the introduction. For more installation options
check the installation guide.

Install Python

The Aeternity Python SDK requires Python v3.7

Get the latest version of Python at https://www.python.org/downloads/ or with
your operating system’s package manager.

You can verify that Python is installed by typing python from your shell;
you should see something like:

Python 3.7.y
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Install the SDK

The Aeternity Python SDK package name is aepp-sdk and it is available
via the pypi.org [https://pypi.org/project/aepp-sdk/] repository.

To install or upgrade run the command

pip install -U aepp-sdk

Verifying

To verify that the Aeternity SDK can be seen by Python, type python from your shell.
Then at the Python prompt, try to import aeternity:

>>> import aeternity
>>> print(aeternity._version())
snapshot

To verify that the CLI is available in your PATH run the command

$ aecli --version
aecli, version snapshot

That’s it!

That’s it – you can now move onto the tutorial.

Transfer funds

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic
script to transfer funds from an account to another.

It’ll consist of three parts:

	Generate 2 accounts via command line client

	Get some funds for the first account

	Transfer the funds from an account to the other

We’ll assume you have the SDK installed already. You can
tell the SDK is installed and which version by running the following command
in a shell prompt (indicated by the $ prefix):

$ aecli --version

First step will be to generate two new accounts using the command line client:

First import the required libraries

from aeternity.node import NodeClient, Config
from aeternity.signing import Account
from aeternity import utils
import os

Then instantiate the node client and generate 2 accounts

NODE_URL = os.environ.get('TEST_URL', 'https://testnet.aeternity.io')

node_cli = NodeClient(Config(
 external_url=NODE_URL,
 blocking_mode=True,
))

generate ALICE account
alice = Account.generate()

generate BOB account
bob = Account.generate()

retrieve the balances for the accounts
bob_balance = node_cli.get_balance(bob)
alice_balance = node_cli.get_balance(alice)

print the balance of the two accounts
print(f"Alice address is {alice.get_address()}")
print(f"with balance {utils.format_amount(alice_balance)}")
print(f"Bob address is {bob.get_address()}")
print(f"with balance {utils.format_amount(bob_balance)}")

Now copy the Alice address and paste it into the Aeternity Faucet [https://testnet.faucet.aepps.com] to top up the account; once the Alice account has some positive balance we can execute the spend transaction:

#TODO pause the execution while using the faucet
execute the spend transaction
tx = node_cli.spend(alice, bob.get_address(), "3AE")
print(f"transaction hash: {tx.hash}")
print(f"inspect transaction at {NODE_URL}/v2/transactions/{tx.hash}")

And finally verify the new balance:

retrieve the balances for the accounts
bob_balance = node_cli.get_balance(bob)
alice_balance = node_cli.get_balance(alice)

print(f"Alice balance is {utils.format_amount(alice_balance)}")
print(f"Bob balance is {utils.format_amount(bob_balance)}")

Thats it! You have successfully executed your transaction in the Aeternity Blockchain testnet network. For the mainnet network the procedure is the same except you will have to get some tokens via an exchange or via other means.

Working with Contracts

This guide describes how you can leverage aepp-sdk to compile,
deploy and interact with aeternity smart contracts.

See also

Sophia: An Æternity Blockchain Language

The Sophia is a language in the ML family.
It is strongly typed and has restricted mutable state.
Check out more about sophia here [https://github.com/aeternity/protocol/blob/master/contracts/sophia.md].

Prerequisites

	An account with some initial AE

	A smart contract written in sophia

	An aeternity node

	A sophia aehttp compiler

Assumptions

We’re going to assume that you have working knowledge of the SDK and
know how to create an Account instance, a NodeClient, and a CompilerClient.

Sample Sophia Contract

Below is the sample sophia contract that we’ll use in this guide.

We need to import the following classes to use contracts.

 aeternity.node import NodeClient, Config
 aeternity.compiler import CompilerClient
 aeternity.contract_native import ContractNative
 aeternity.signing import Account

Initializing NodeClient and Compiler

Below are the steps required to initialize the the NodeClient and Compiler.
As you can see below, during the initialization of NodeClient we’re also providing the internal_url.

internal_url provides the debug endpoint to dry_run a contract method which
can also be used to do static calls on deployed contracts and this is what exactly we’re going to use this for.

You can also not provide the internal_url but then you’ll have to disable the use of dry-run endpoint.
We’ll see how to do that when we initialize our contract.

NODE_URL = os.environ.get('TEST_URL', 'http://127.0.0.1:3013')
NODE_INTERNAL_URL = os.environ.get('TEST_DEBUG_URL', 'http://127.0.0.1:3113')
COMPILER_URL = os.environ.get('TEST_COMPILER__URL', 'https://compiler.aepps.com')

node_cli = NodeClient(Config(
 external_url=NODE_URL,
 internal_url=NODE_INTERNAL_URL,
 blocking_mode=True,
))

compiler = CompilerClient(compiler_url=COMPILER_URL)

Generate an Account

You’ll need an account (using the Account class) to deploy the contract and also for stateful contract calls.

genrate ALICE account (and transfer AE to alice account)
alice = Account.generate()

Read the Contract from file and initialize

You can read the contract from the stored .aes file and use it to initilaize the contract instance.
If you have not provided the internal_endpoint or simple do not want to use the dry-run functionality
you can disable it by passing use-dry-run=False to the ContractNative constructor.

Warning

If you DO NOT provide the internal_url during NodeClient initialization
and also DID NOT disable the dry-run then the contract method calls for
un-stateful methods WILL FAIL.

CONTRACT_FILE = os.path.join(os.path.dirname(__file__), "testdata/CryptoHamster.aes")

read contract file
with open(CONTRACT_FILE, 'r') as file:
 crypto_hamster_contract = file.read()

"""
Initialize the contract instance
To disable use of dry-run endpoint use:
crypto_hamster = ContractNative(client=node_cli, compiler=compiler, account=alice, source=crypto_hamster_contract, use_dry_run=False)
"""
crypto_hamster = ContractNative(client=node_cli, compiler=compiler, account=alice, source=crypto_hamster_contract)

Compile and deploy the contract

You can compile the contract and deploy it using the deploy method.
If your init method accepts any arguments then please provide them inside the deploy method.
Once the contract is compiled and deployed, the signed transaction is returned.

deploy the contract (you can also pass the args if required by the init method of the contract)
tx = crypto_hamster.deploy()

Call the contract methods

Once the contract is deployed, all the methods inside the contract are
also available (with same signature) to use from the contract instance.

Note

All the methods that are NOT stateful, by default are processed using the dry-run endpoint to save gas.
And therefore, a transaction hash will also not be provided for them.
This functionality can be either diabled for the contract instance or per method by using use_dry_run argument.

call the contract method (stateful)
tx_info, tx_result = crypto_hamster.add_test_value(1, 2)

print(f"Transaction Hash: {tx_info.tx_hash}")
print(f"Transaction Result/Return Data: {tx_result}")

call contract method (not stateful)
tx_info, tx_result = crypto_hamster.get_hamster_dna("SuperCryptoHamster", None)

print(f"Transaction Result/Return Data: {tx_result}")

Claimin a name

This guide describes how you can leverage aepp-sdk to claim a name
on the aternity blockchain.

Prerequisites

Assumptions

We’re going to assume that you have working knowledge of the SDK and
know how to create an Account instance, a NodeClient, and a CompilerClient.

TODO

Using Generalized Accounts

This page describe how to use the Python SDK to convert a basic account to a generalized one.
For additional information about genrealized accounts visit the `protocol documentation`_

Example

The following example describe how to transform a basic account to a generalized one and
how to execute a spend transaction from a generalized account.

from aeternity.node import NodeClient, Config
from aeternity.signing import Account
from aeternity.transactions import TxBuilder
from aeternity.compiler import CompilerClient
from aeternity import defaults, hashing, utils

import requests

def top_up_account(account_address):

 print()
 print(f"top up account {account_address} using the testnet.faucet.aepps.com app")
 r = requests.post(f"https://testnet.faucet.aepps.com/account/{account_address}").json()
 tx_hash = r.get("tx_hash")
 balance = utils.format_amount(r.get("balance"))
 print(f"account {account_address} has now a balance of {balance}")
 print(f"faucet transaction hash {tx_hash}")
 print()

def main():

 """
 This example is divided in 2 parts
 - the first one is about transforming a Basic account to Generalized
 - the second shows how to post transactions from GA accounts
 """

 #
 # PART 1: fro Basic to GA
 #
 print("Part #1 - transform a Basic account to a Generalized one")
 print()

 # first we create a new account
 # this will be the ga account
 print(f"generate a new account")
 ga_account = Account.generate()
 print(f"your basic account address is {ga_account.get_address()}")

 # use the faucet to top up your ga account
 top_up_account(ga_account.get_address())

 # Instantiate a node client
 node_url = "http://sdk-testnet.aepps.com"
 print(f"using node at {node_url}")
 # get the node client
 n = NodeClient(Config(
 external_url=node_url,
 blocking_mode=True # we want the client to verify the transactions are included in the chain
))

 # we are going to use a contract that will not be performing
 # any real authorization, just to provide a proof of concept
 # for the ga interaction
 #
 # DO NOT USE THIS CONTRACT IN A REAL SCENARIO
 # DO NOT USE THIS CONTRACT IN A REAL SCENARIO
 # DO NOT USE THIS CONTRACT IN A REAL SCENARIO
 #
 # this contract authorizes anybody to perform transactions
 # using the funds of the account!
 #
 blind_auth_contract = """contract BlindAuth =
 record state = { owner : address }

 entrypoint init(owner' : address) = { owner = owner' }

 stateful entrypoint authorize(r: int) : bool =
 // r is a random number only used to make tx hashes unique
 switch(Auth.tx_hash)
 None => abort("Not in Auth context")
 Some(tx_hash) => true
 """

 # Instantiate a compiler client
 compiler_url = "https://compiler.aepps.com"
 print(f"using compiler at {compiler_url}")
 # get the node client
 c = CompilerClient(compiler_url=compiler_url)

 print()

 # compile the contract for the ga an retrieve the bytecode
 print("compile ga contract")
 bytecode = c.compile(blind_auth_contract).bytecode

 # prepare the calldata for the init function
 print("encode the init function calldata")
 init_calldata = c.encode_calldata(blind_auth_contract, "init", [ga_account.get_address()]).calldata

 # now we execute the first step, we'll be transforming the account into a ga
 print("execute the GaAttach transaction")
 ga_attach_tx = n.account_basic_to_ga(
 ga_account, # the ga account
 bytecode, # the bytecode of the ga contract
 init_calldata=init_calldata, # the encoded parameters of the init function
 auth_fun="authorize", # the name of the authentication function to use from the contract
 gas=1000
)
 print(f"GaAttachTx hash is {ga_attach_tx.hash}")
 print(f"the account {ga_account.get_address()} is now generalized")

 #
 # END of PART 1
 #

 print()

 #
 # PART 2: posting a transaction from a GA account
 #
 # In this part we will be creating a spend transaction and we'll transfer 4AE
 # from the generalized account to a newly created account
 #
 print("Part #2 - Create a spend transaction from a GA account")
 print()

 # we will be using the compiler client and the node client from the PART 1

 # first we create a new account
 # this will be the recipient account
 rc_account_address = "ak_2iBPH7HUz3cSDVEUWiHg76MZJ6tZooVNBmmxcgVK6VV8KAE688"
 print(f"the recipient account address is {rc_account_address}")

 # then we prepare the parameters for a spend transaction
 sender_id = ga_account.get_address() # the ga sendder account
 amount = 4000000000000000000 # we will be sending 4.9AE
 payload = "" # we'll be sending an empty payload
 fee = defaults.FEE # we'll use the default fee (the client will generate the right fee for us)
 ttl = defaults.TX_TTL # we'll use the default ttl for the transaction
 nonce = defaults.GA_ACCOUNTS_NONCE # we'll use 0 as nonce since is is a special case

 # now we'll use the builder to prepare the spend transaction
 print(f"prepare a spend transaction from {sender_id} to {rc_account_address} of {utils.format_amount(amount)}")
 builder = TxBuilder()
 spend_tx = builder.tx_spend(sender_id, rc_account_address, amount, payload, fee, ttl, nonce)

 # now that we have the transaction we need to prepare the authentication data for the ga transaction
 print("encode the authorize function calldata")
 auth_calldata = c.encode_calldata(blind_auth_contract, "authorize", [hashing.randint()]).calldata

 # and use the sign_transaction with the auth_calldata to automatically
 # prepare the ga transaction for us
 print("execute the GaMeta transaction")
 ga_meta_tx = n.sign_transaction(ga_account, spend_tx, auth_data=auth_calldata)

 # and finally we can broadcast the transaction
 ga_meta_tx_hash = n.broadcast_transaction(ga_meta_tx)
 print(f"GaMetaTx hash is {ga_meta_tx_hash}")
 print(f"the account spend transaction has been executed")

 # note that you can verify all the steps above using the command line client
 print()
 print("Verify the steps using the command line client")
 print("1. Check the ga account:")
 print(f"aecli inspect {ga_account.get_address()}")
 print("2. Check the GaAttachTx:")
 print(f"aecli inspect {ga_attach_tx.hash}")
 print("3. Check the GaMetaTx:")
 print(f"aecli inspect {ga_meta_tx_hash}")

if __name__ == "__main__":
 main()

Command Line Interface (CLI)

We’ll assume you have the SDK installed already. You can
tell the SDK is installed and which version by running the following command
in a shell prompt (indicated by the $ prefix):

CLI Usage

See below for programmatic usage

You can launch the command line tool using

$ aecli

Available commands:

Usage: aecli [OPTIONS] COMMAND [ARGS]...

 Welcome to the aecli client.

 The client is to interact with an node node.

Options:
 --version Show the version and exit.
 -u, --url URL Node node url
 -d, --debug-url URL
 --force Ignore node version compatibility check
 --wait Wait for transactions to be included
 --json Print output in JSON format
 --version Show the version and exit.
 --help Show this message and exit.

Commands:
 account Handle account operations
 chain Interact with the blockchain
 config Print the client configuration
 inspect Get information on transactions, blocks,...
 name Handle name lifecycle
 oracle Interact with oracles
tx Handle transactions creation

Environment variables

Use the environment variables

	NODE_URL

	NODE_URL_DEBUG

Example usage

The following is a walkthrough
to execute a spend transaction on the testnet [https://testnet.aeternal.io] network

	Set the environment variables

$ export NODE_URL=https://testnet.aeternity.io

❗ When not set the command line client will connect to mainnet

	Retrieve the top block

$ aecli chain top
<top for node at https://testnet.aeternity.io >
 Hash __ mh_2GKNC4Nft3mTtiUizsgmNySM6bmrtEk47AFd7QYxGLni6dHuSH
 Height __ 171074
 Pof hash __ no_fraud
 Prev hash ___ mh_2C1qtupSRTGhfgXStkFgPgTU7EtRpbj3R6JeqY94mKDnUM5erw
 Prev key hash _____________________________________ kh_2mMnrh68xvs25qqnY6Q6BCYPPGEfW2AshvThNDugut12KGCjTp
 Signature ___ sg_UGs78hj7QJ96TZR4vLmrUPmXW2STFPQCR49q1mEvyEHWotC1k8DB6qfqwJGFjRtZL27rSEitLRee5wCqbs4XtGVZAFiCk
 State hash __ bs_2ZvCLwHsVPkEn43qvviRpr1vQ1snpGd1izex6kScbU2Zd99s9S
 Time __ 2019-11-20T11:11:22.934000+00:00
 Txs hash __ bx_D4Y9x2RjobeCEETZqbVgYFsNu6UKhdSTAJXdXZBb5JbAuW7QA
 Version ___ 4
</top for node at https://testnet.aeternity.io >

	Create a new account

$ aecli account create Bob.json
Enter the account password []:
<account>
 Address ___ ak_BobY97QUVR4iDLg4k3RKmy6shZYx9FR75nLaN33GsVmSnhWxn
 Path __ /.../Bob.json
</account>

❗ Make sure that you use a long and difficult-to-guess password for an account that you plan to use on mainnet

	Go to testnet.faucet.aepps.com and top up your account

	Inspect the transaction reported by the faucet app

$ aecli inspect th_2CV4a7xxDYj5ysaDjXNoCSLxnkowGM5bbyAvtdoPvHZwTSYykX
<transaction>
 <data>
 Block height ____________________________________ 12472
 Block hash ______________________________________ mh_2vjFffExUZPVGo3q6CHRSzxVUhzLcUnQQUWpijFtSvKfoHwQWe
 Hash __ th_2CV4a7xxDYj5ysaDjXNoCSLxnkowGM5bbyAvtdoPvHZwTSYykX
 <signatures 1>
 Signature #1 __________________________________ sg_WtPeyKWN4zmcnZZXpAxCT8EvjF3qSjiUidc9cdxQooxe1JCLADTVbKDFm9S5bNwv3yq57PQKTG4XuUP4eTzD5jymPHpNu
 </signatures>
 <tx>
 <data>
 Amount ______________________________________ 5AE
 Fee ___ 2.0000E-14AE
 Nonce _______________________________________ 146
 Payload _____________________________________ ba_RmF1Y2V0IFR4tYtyuw==
 Recipient id ________________________________ ak_2ioQbdSViNKjknaLUWphdRjpbTNVpMHpXf9X5ZkoVrhrCZGuyW
 Sender id ___________________________________ ak_2iBPH7HUz3cSDVEUWiHg76MZJ6tZooVNBmmxcgVK6VV8KAE688
 Ttl ___ 12522
 Type __ SpendTx
 Version _____________________________________ 1
 Tag ___ 12
 </data>
 <metadata>
 Min fee _____________________________________ 0.00001706AE
 </metadata>
 Tx __ tx_+GEMAaEB4TK48d23oE5jt/qWR5pUu8UlpTGn8bwM5JISGQMGf7ChAeKbvpV6jbxy/le3tbquBoRjk0ehgOsRdSzc09bKfw3uiEVjkYJE9AAAgk4ggjDqgZKJRmF1Y2V0IFR47rafGA==
 </tx>
 Tag ___ 11
 Type __ SignedTx
 Version ___ 1
 </data>
 Tx __ tx_+KsLAfhCuEDkb9XQq/ihtZ+DNbDBI/9ntVGwcJJLCV0qZE8c9wMxAeTyyG3hVqthIco/NLuaVQ0N3XRYhYb6PsYOjAf8hzMJuGP4YQwBoQHhMrjx3begTmO3+pZHmlS7xSWlMafxvAzkkhIZAwZ/sKEB4pu+lXqNvHL+V7e1uq4GhGOTR6GA6xF1LNzT1sp/De6IRWORgkT0AACCTiCCMOqBkolGYXVjZXQgVHgQZGwg
 Hash __ th_2CV4a7xxDYj5ysaDjXNoCSLxnkowGM5bbyAvtdoPvHZwTSYykX
</transaction>

	Create another account

	::

	$ aecli account create Alice.json
Enter the account password []:
<account>

Address ___ ak_9j8akv2PE2Mnt5khFeDvS9BGc3TBBrJkfcgaJHgBXcLLagX8M
Path __ /…/Alice.json

</account>

	Transfer some tokens to an account to the other

	::

	$ aecli account spend Bob.json ak_9j8akv2PE2Mnt5khFeDvS9BGc3TBBrJkfcgaJHgBXcLLagX8M 1AE
Enter the account password []:
<spend transaction>

	<data>

	Tag ___ 12
Vsn ___ 1
Sender id _______________________________________ ak_BobY97QUVR4iDLg4k3RKmy6shZYx9FR75nLaN33GsVmSnhWxn
Recipient id ____________________________________ ak_9j8akv2PE2Mnt5khFeDvS9BGc3TBBrJkfcgaJHgBXcLLagX8M
Amount __ 1AE
Fee ___ 0.00001686AE
Ttl ___ 0
Nonce ___ 4
Payload ___

</data>
Metadata
Tx __ tx_+KMLAfhCuEAKN05UwTV0fSgO5woziVNnAMBcDrh46XlNFTZTJQlI05fz/8pVSyrb1guCLcw8n7++O887k/JEu6/XHcCSHOMMuFv4WQwBoQEYh8aMDs7saMDBvys+lbKds3Omnzm4crYNbs9xGolBm6EBE9B4l/BeyxMO//3ANxwyT+ZHL52j9nAZosRe/YFuK4eIDeC2s6dkAACGD1WGT5gAAASAN24JGA==
Hash __ th_2gAL72dtnaeDcZoZA9MbfSL1JrWzNErMJuikmTRvBY8zhkGh91
Signature ___ sg_2LX9hnJRiYGSspzpS34QeN3PLT9bGSkFRbad9LXvLj5QUFoV5eHRf9SueDgLiiquCGbeFEBPBe7xMJidf8NMSuF16dngr
Network id __ ae_uat

</spend transaction>

	Verify the balance of the new account

	::

	$ aecli inspect ak_9j8akv2PE2Mnt5khFeDvS9BGc3TBBrJkfcgaJHgBXcLLagX8M
<account>

Balance ___ 1AE
Id __ ak_9j8akv2PE2Mnt5khFeDvS9BGc3TBBrJkfcgaJHgBXcLLagX8M
Kind __ basic
Nonce ___ 0
Payable ___ True

</account>

Contributing

Contributing to the Aeternity Python SDK

Pull Requests

	Squash your commits to ensure each resulting commit is stable and can be tested.

	Include issue numbers in the PR title, e.g. “GH-128. Resolves issue #123”.

	Add unit tests for self-contained modules.

	Add integration tests as needed.

	Document new code.

Git Commit Messages

	Use the present tense (“Add feature” not “Added feature”)

	Use the imperative mood (“Move cursor to…” not “Moves cursor to…”)

	Limit the first line to 72 characters or less

	Reference issues and pull requests liberally after the first line

Learn more about writing a good commit message [https://chris.beams.io/posts/git-commit/].

“How-to” guides

Here you’ll find short answers to “How do I….?” types of questions. These
how-to guides don’t cover topics in depth. However, these guides will help
you quickly accomplish common tasks.

	Account management via CLI

See also

Many writers in the Aeternity forum [https://forum.aeternity.com] write this sort of
how-to material.

Account management via CLI

The Python SDK comes with a command line client (CLI) that can be used
among other things to generate, store, inspect and load accounts

Generate a new account

The command to generate a new (non HD) account is:

$ aecli account create KEYSTORE_FILENAME.json

the command will ask for a password and will store the account in the file
named KEYSTORE_FILENAME.json; here an example:

➜ aecli account create BOB.json
Enter the account password []:
<account>
 Address ___ ak_2P44NhGFT7fP1TFpZ62FwabWP9djg5sDwFNDVVpiGgd3p4yA7X
 Path __ /howto/BOB.json
</account>

Print the secret key of an account

Warning

The secret key is printed in “clear text”, by printing it on the terminal or saving
it unencrypted you expose your account

the command to print the public and secret key of an account saved in a keystore file is:

$ aecli account address --secret-key KEYSTORE_FILENAME.json

Example:

➜ aecli account address BOB.json --secret-key
Enter the account password:
!Warning! this will print your secret key on the screen, are you sure? [y/N]: y
<account>
 Address ___ ak_2P44NhGFT7fP1TFpZ62FwabWP9djg5sDwFNDVVpiGgd3p4yA7X
 Secretkey ___ c226bf650f30740287f77a715............f49ddff758971112fb5cfb0e66975a8f
</account>

Topics

	How to install the Aeternity SDK

	Keystore format change [LEGACY]

How to install the Aeternity SDK

This document will explain differnet way to install the Aeternity Python SDK

Install Python

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s package manager.

Install the SDK

Installation instructions are slightly different depending on whether you’re
installing official relase or fetching the latest development version.

Installing an official release with pip

This is the recommended way to install the Aeternity SDK

	Install pip [https://pip.pypa.io/]. The easiest is to use the standalone pip installer [https://pip.pypa.io/en/latest/installing/#installing-with-get-pip-py]. If your
distribution already has pip installed, you might need to update it if
it’s outdated. If it’s outdated, you’ll know because installation won’t
work.

	Take a look at virtualenv [https://virtualenv.pypa.io/] and virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]. These tools provide
isolated Python environments, which are more practical than installing
packages systemwide. They also allow installing packages without
administrator privileges. The contributing tutorial walks through how to create a virtualenv.

	After you’ve created and activated a virtual environment, enter the command:

$ python -m pip install aepp-sdk

Installing the development version

If you’d like to be able to update your SDK code occasionally with the
latest bug fixes and improvements, follow these instructions:

	Make sure that you have Git_ installed and that you can run its commands
from a shell. (Enter git help at a shell prompt to test this.)

	Install Poetry [https://poetry.eustace.io/] and make sure it is available in your PATH

	Check out the SDK main development branch like so:

$ git clone https://github.com/aeternity/aepp-sdk-python.git

This will create a directory aepp-sdk-python in your current directory.

	Make sure that the Python interpreter can load the SDK’s code. The most
convenient way to do this is to use virtualenv [https://virtualenv.pypa.io/], virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/], and
pip [https://pip.pypa.io/].

	After setting up and activating the virtualenv, run the following command:

$ poetry build
$ python -m pip install dist/$(ls -tr dist | grep whl | tail -1)

This will make the SDK code importable, and will also make the
aecli utility command available. In other words, you’re all set!

When you want to update your copy of the SDK source code, run the command
git pull from within the aepp-sdk-directory directory. When you do this, Git will
download any changes.

Where is the command line client?

The Python SDK bundles a command line client aecli that can be use to submit
transactions and poke around the Aeternity blockchain.
To be able to access the command line client you have to add it to your executable
path. To find out where is your base path for installed python libraries use the command
python -m site --user-base

Keystore format change [LEGACY]

The release 0.25.0.1 of the Python SDK change the format of the keystore used to store
a secret key in an encrypted format.

The previous format, suported till version 0.25.0.1b1 is not supported anymore and secret keys
encrypted with the legacy format will have to be updated manually.

Warning

⚠️ BEFORE YOU START

The following procedure will print your secret key unencrypted on the terminal.

Make sure you perform this procedure in a secret setting.

The follwing steps are required to upgade a keystore (named my_account.json).

	Install the aepp-sdk v0.25.0.1b1

$ pip install aepp-sdk==0.25.0.1b1

Verify that you are using the correct version

$ aecli --version
aecli, version 0.25.0.1b1

	Print your secret key to the terminal

aecli account address --secret-key my_account.json
Enter the account password []:
!Warning! this will print your secret key on the screen, are you sure? [y/N]: y
<account>
 Address ___ ak_2UeaQn7Ei7HoMvDTiq2jyDuE8ymEQMPZExzC64qWTxpUnanYsE
 Signing key _______________________________________ 507f598f2fac1a4ab57edae53650cbf7ffae9eeeea1a297cc7c3b6172052e55ec27954c4ba901cf9b3760dc12b2c313d60fcc674ba2d04746ed813a91499a2ed
</account>

	Install the aepp-sdk v0.25.0.1

$ pip install aepp-sdk==0.25.0.1

Verify that you are using the correct version

$ aecli --version
aecli, version 0.25.0.1

	Save the secret key to the new format

aecli account save my_account_new.json 507f598f2fac1a4ab57edae53650cbf7ffae9eeeea1a297cc7c3b6172052e55ec27954c4ba901cf9b3760dc12b2c313d60fcc674ba2d04746ed813a91499a2ed
Enter the account password []:
<account>
 Address ___ ak_2UeaQn7Ei7HoMvDTiq2jyDuE8ymEQMPZExzC64qWTxpUnanYsE
 Path __ /Users/andrea/tmp/aeternity/my_account_new.json
</account>

	Verify that the new keystore has the correct format

the content of the keystore file should appear as the following:

$ cat my_account_new.json
{"public_key": "ak_2UeaQn7Ei7HoMvDTiq2jyDuE8ymEQMPZExzC64qWTxpUnanYsE", "crypto": {"secret_type": "ed25519", "symmetric_alg": "xsalsa20-poly1305", "ciphertext": "f431af7e6f00da7f9acc8187900b97d42526eb135f4db0da80a7809f36a00e37f3a313f7c611784f381e58620bb2c23ef2686c3e61af28381f3a2dc6b0fcc168d46fd8d3c2bd473311140b7ee5acaa2d", "cipher_params": {"nonce": "1ea25d885a68adf13998e0fad17b22e7ade78f5cf1670eb1"}, "kdf": "argon2id", "kdf_params": {"memlimit_kib": 262144, "opslimit": 3, "salt": "c3dd4a4ac8347b3ad706756b96919387", "parallelism": 1}}, "id": "44c3d693-a890-4ac1-936b-0a65c8293388", "name": "", "version": 1}

	Cleanup!

Once the operation is completed, cleanup the terminaly history that contains
your secret key

history -c

And remove the old account file

rm my_account.json

API Reference

	Node Client

	TxObject

	Constants

Node Client

The Config class is used to intialized the NodeClient

	
class aeternity.node.Config(external_url='http://localhost:3013', internal_url='http://localhost:3113', websocket_url='http://localhost:3014', force_compatibility=False, **kwargs)

	
	
__init__(external_url='http://localhost:3013', internal_url='http://localhost:3113', websocket_url='http://localhost:3014', force_compatibility=False, **kwargs)

	Initialize a configuration object to be used with the NodeClient

	Parameters

	
	external_url – the node external url

	internal_url – the node internal url

	websocket_url – the node websocket url

	force_compatibility – ignore node version compatibility check (default False)

	**kwargs – see below

	Kwargs:

	
	blocking_mode (bool)

	whenever to block the execution when broadcasting a transaction until the transaction is mined in the chain, default: False

	tx_gas_per_byte (int)

	the amount of gas per byte used to calculate the transaction fees, [optional, default: defaults.GAS_PER_BYTE]

	tx_base_gas (int)

	the amount of gas per byte used to calculate the transaction fees, [optional, default: defaults.BASE_GAS]

	tx_gas_price (int)

	the gas price used to calculate the transaction fees,
it is set by consensus but can be increased by miners [optional, default: defaults.GAS_PRICE]

	network_id (str)

	the id of the network that is the target for the transactions, if not provided it will be automatically selected by the client

	contract_gas (int)

	default gas limit to be used for contract calls, [optional, default: defaults.CONTRACT_GAS]

	contract_gas_price (int)

	default gas price used for contract calls, [optional, default: defaults.CONTRACT_GAS_PRICE]

	oracle_ttl_type (int)

	default oracle ttl type

	key_block_interval (int)

	the key block interval in minutes

	key_block_confirmation_num (int)

	the number of key blocks to consider a transaction confirmed

	poll_tx_max_retries (int)

	max poll retries when checking if a transaction has been included

	poll_tx_retries_interval (int)

	the interval in seconds between retries

	poll_block_max_retries (int)

	TODO

	poll_block_retries_interval (int)

	TODO

	debug (bool)

	TODO

The NodeClient is the main object to interact with an Aeternity node.

	
class aeternity.node.NodeClient(config=<aeternity.node.Config object>)

	
	
account_basic_to_ga(account: aeternity.signing.Account, ga_contract: str, calldata: str, auth_fun: str = 'authorize', fee=0, tx_ttl: int = 0, gas: int = 10000, gas_price=1000000000) → aeternity.transactions.TxObject

	Transform a Basic to a GA (Generalized Account)

	Parameters

	
	account – the account to transform

	ga_contract – the compiled contract associated to the GA

	calldata – the calldata for the authentication function

	auth_fun – the name of the contract function to use for authorization (default: authorize)

	gas – the gas limit for the authorization function execution

	gas_price – the gas price for the contract execution

	fee – TODO

	ttl – TODO

	Returns

	the TxObject of the transaction

	Raises

	
	TypeError – if the auth_fun is missing

	TypeError – if the auth_fun is no found in the contract

	
broadcast_transaction(tx: aeternity.transactions.TxObject)

	Post a transaction to the chain and verify that the hash match the local calculated hash
It blocks for a period of time to wait for the transaction to be included if in blocking_mode

	Parameters

	tx – the transaction to broadcast

	Returns

	the transaction hash of the transaction

	Raises

	TransactionHashMismatch – if the transaction hash returned by the node is different from the one calculated

	
compute_absolute_ttl(relative_ttl)

	Compute the absolute ttl by adding the ttl to the current height of the chain

	Parameters

	relative_ttl – the relative ttl, if 0 will set the ttl to 0

	
get_account(address: str) → aeternity.signing.Account

	Retrieve an account by it’s public key

	
get_balance(account) → int

	Retrieve the balance of an account, return 0 if the account has not balance

	Parameters

	account – either an account address or a signing.Account object

	Returns

	the account balance or 0 if the account is not known to the network

	
get_block_by_hash(hash=None)

	Retrieve a key block or a micro block header
based on the block hash_prefix

	Parameters

	block_hash – either a key block or micro block hash

	Returns

	the block matching the hash

	
get_consensus_protocol_version(height: int = None) → int

	Get the consensus protocol version number
:param height: the height to get the protocol version for, if None the current height will be used
:return: the version

	
get_next_nonce(account_address)

	Get the next nonce to be used for a transaction for an account

	Parameters

	node – the node client

	Returns

	the next nonce for an account

	
get_top_block()

	Override the native method to transform the get top block response object
to a Block

	Returns

	a block (either key block or micro block)

	
get_vm_abi_versions()

	Check the version of the node and retrieve the correct values for abi and vm version

	
sign_transaction(account: aeternity.signing.Account, tx: aeternity.transactions.TxObject, metadata: dict = {}, **kwargs) → aeternity.transactions.TxObject

	The function sign a transaction to be broadcast to the chain.
It automatically detect if the account is Basic or GA and return
the correct transaction to be broadcast.

	Parameters

	
	account – the account signing the transaction

	tx – the transaction to be signed

	metadata – additional metadata to maintain in the TxObject

	**kwargs – for GA accounts, see below

	Kwargs:

	
	auth_data (str)

	the encoded calldata for the GA auth function

	gas (int)

	the gas limit for the GA auth function [optional]

	gas_price (int)

	the gas price for the GA auth function [optional]

	fee (int)

	the fee for the GA transaction [optional, automatically calculated]

	abi_version (int)

	the abi_version to select FATE or AEVM [optional, default 3/FATE]

	ttl (str)

	the transaction ttl expressed in relative number of blocks [optional, default 0/max_ttl]:

	Returns

	a TxObject of the signed transaction or metat transaction for GA

	Raises

	
	TypeError – if the auth_data is missing and the account is GA

	TypeError – if the gas for auth_func is gt defaults.GA_MAX_AUTH_FUN_GAS

	
spend(account: aeternity.signing.Account, recipient_id: str, amount, payload: str = '', fee: int = 0, tx_ttl: int = 0) → aeternity.transactions.TxObject

	Create and execute a spend transaction,
automatically retrieve the nonce for the siging account
and calculate the absolut ttl.

	Parameters

	
	account – the account signing the spend transaction (sender)

	recipient_id – the recipient address or name_id

	amount – the amount to spend

	payload – the payload for the transaction

	fee – the fee for the transaction (automatically calculated if not provided)

	tx_ttl – the transaction ttl expressed in relative number of blocks

	Returns

	the TxObject of the transaction

	Raises

	TypeError – if the recipient_id is not a valid name_id or address

	
transfer_funds(account: aeternity.signing.Account, recipient_id: str, percentage: float, payload: str = '', tx_ttl: int = 0, fee: int = 0, include_fee=True)

	Create and execute a spend transaction

	
verify(encoded_tx: str) → aeternity.transactions.TxObject

	Unpack and verify an encoded transaction

	
wait_for_confirmation(tx_hash, max_retries=None, polling_interval=None)

	Wait for a transaction to be confirmed by at least “key_block_confirmation_num” blocks (default 3)
The amount of blocks can be configured in the Config object using key_block_confirmation_num parameter

	Parameters

	
	tx_hash – the hash of the transaction to wait for

	max_retries – the maximum number of retries to test for transaction

	polling_interval – the interval between transaction polls

	Returns

	the block height of the transaction if it has been found

	
wait_for_transaction(tx_hash, max_retries=None, polling_interval=None)

	Wait for a transaction to be mined for an account
The method will wait for a specific transaction to be included in the chain,
it will return False if one of the following conditions are met:
- the chain reply with a 404 not found (the transaction was expunged)
- the account nonce is >= of the transaction nonce (transaction is in an illegal state)
- the ttl of the transaction or the one passed as parameter has been reached

	Parameters

	
	tx_hash – the hash of the transaction to wait for

	max_retries – the maximum number of retries to test for transaction

	polling_interval – the interval between transaction polls

	Returns

	the block height of the transaction if it has been found

	Raises

	TransactionWaitTimeoutExpired – if the transaction hasn’t been found

TxObject

	
class aeternity.transactions.TxObject(**kwargs)

	This is a TxObject that is used throughout the SDK for transactions
It contains all the info associated to a transaction like transaction data,transaction hash, etx

	
get_signature(index)

	get the signature at the requested index, or raise type error if there is no such index

	
get_signatures()

	retrieves the list of signatures for a signed transaction, otherwise returns a empty list

Constants

The following are a list of constants used throughout the SDK

fee calculation
BASE_GAS = 15000
GAS_PER_BYTE = 20
GAS_PRICE = 1000000000
default relative ttl in number of blocks for executing transaction on the chain
MAX_TX_TTL = 256
TX_TTL = 0
FEE = 0
contracts
CONTRACT_GAS = 10000
CONTRACT_GAS_PRICE = 1000000000
CONTRACT_DEPOSIT = 0
CONTRACT_AMOUNT = 0
calldata for the init function with no parameters
CONTRACT_INIT_CALLDATA = "cb_AAACC5yVbyizFJqfWYeqUF89obIgnMVzkjQAYrtsG9n5" + \
 "+Z6gAAnHQYrA=="
https://github.com/aeternity/protocol/blob/master/oracles/oracles.md#technical-aspects-of-oracle-operations
ORACLE_VM_VERSION = identifiers.NO_VM
ORACLE_TTL_TYPE = identifiers.ORACLE_TTL_TYPE_DELTA
ORACLE_QUERY_FEE = 0
ORACLE_TTL_VALUE = 500
ORACLE_QUERY_TTL_VALUE = 10
ORACLE_RESPONSE_TTL_VALUE = 10
Chain
KEY_BLOCK_INTERVAL = 3 # average time between key-blocks in minutes
KEY_BLOCK_CONFIRMATION_NUM = 3 # number of key blocks to wait for to consider a key-block confirmed
network id
NETWORK_ID = identifiers.NETWORK_ID_MAINNET
TUNING
POLL_TX_MAX_RETRIES = 8 # used in exponential backoff when checking a transaction
POLL_TX_RETRIES_INTERVAL = 2 # in seconds
POLL_BLOCK_MAX_RETRIES = 20 # number of retries
POLL_BLOCK_RETRIES_INTERVAL = 30 # in seconds
channels
CHANNEL_ENDPOINT = 'channel'
CHANNEL_URL = 'ws://127.0.0.1:3014'
Generalized accounts
GA_AUTH_FUNCTION = "authorize"
GA_MAX_AUTH_FUN_GAS = 50000
GA_ACCOUNTS_NONCE = 0 # for tx in ga transactions the nonce must be 0
Aens
max number of block into the future that the name is going to be available
https://github.com/aeternity/protocol/blob/master/AENS.md#aens-entry
NAME_MAX_TTL = 50000 # in blocks
NAME_MAX_CLIENT_TTL = 84600 # in seconds
NAME_FEE = 0
see https://github.com/aeternity/aeternity/blob/72e440b8731422e335f879a31ecbbee7ac23a1cf/apps/aecore/src/aec_governance.erl#L67
NAME_FEE_MULTIPLIER = 100000000000000
NAME_FEE_BID_INCREMENT = 0.05 # the increment is in percentage
see https://github.com/aeternity/aeternity/blob/72e440b8731422e335f879a31ecbbee7ac23a1cf/apps/aecore/src/aec_governance.erl#L272
NAME_BID_TIMEOUT_BLOCKS = 480 # ~1 day
NAME_BID_MAX_LENGTH = 12 # this is the max length for a domain to be part of a bid
ref: https://github.com/aeternity/aeternity/blob/72e440b8731422e335f879a31ecbbee7ac23a1cf/apps/aecore/src/aec_governance.erl#L290
bid ranges:
NAME_BID_RANGES = {
 31: 3 * NAME_FEE_MULTIPLIER,
 30: 5 * NAME_FEE_MULTIPLIER,
 29: 8 * NAME_FEE_MULTIPLIER,
 28: 13 * NAME_FEE_MULTIPLIER,
 27: 21 * NAME_FEE_MULTIPLIER,
 26: 34 * NAME_FEE_MULTIPLIER,
 25: 55 * NAME_FEE_MULTIPLIER,
 24: 89 * NAME_FEE_MULTIPLIER,
 23: 144 * NAME_FEE_MULTIPLIER,
 22: 233 * NAME_FEE_MULTIPLIER,
 21: 377 * NAME_FEE_MULTIPLIER,
 20: 610 * NAME_FEE_MULTIPLIER,
 19: 987 * NAME_FEE_MULTIPLIER,
 18: 1597 * NAME_FEE_MULTIPLIER,
 17: 2584 * NAME_FEE_MULTIPLIER,
 16: 4181 * NAME_FEE_MULTIPLIER,
 15: 6765 * NAME_FEE_MULTIPLIER,
 14: 10946 * NAME_FEE_MULTIPLIER,
 13: 17711 * NAME_FEE_MULTIPLIER,
 12: 28657 * NAME_FEE_MULTIPLIER,
 11: 46368 * NAME_FEE_MULTIPLIER,
 10: 75025 * NAME_FEE_MULTIPLIER,
 9: 121393 * NAME_FEE_MULTIPLIER,
 8: 196418 * NAME_FEE_MULTIPLIER,
 7: 317811 * NAME_FEE_MULTIPLIER,
 6: 514229 * NAME_FEE_MULTIPLIER,
 5: 832040 * NAME_FEE_MULTIPLIER,
 4: 1346269 * NAME_FEE_MULTIPLIER,
 3: 2178309 * NAME_FEE_MULTIPLIER,
 2: 3524578 * NAME_FEE_MULTIPLIER,
 1: 5702887 * NAME_FEE_MULTIPLIER,
}

ref: https://github.com/aeternity/aeternity/blob/72e440b8731422e335f879a31ecbbee7ac23a1cf/apps/aecore/src/aec_governance.erl#L273
name bid timeouts
NAME_BID_TIMEOUTS = {
 13: 0,
 8: 1 * NAME_BID_TIMEOUT_BLOCKS, # 480 blocks
 4: 31 * NAME_BID_TIMEOUT_BLOCKS, # 14880 blocks
 1: 62 * NAME_BID_TIMEOUT_BLOCKS, # 29760 blocks
}

dry run
DRY_RUN_ADDRESS = "ak_11111111111111111111111111111111273Yts"
DRY_RUN_AMOUNT = 100000000000000000000000000000000000

FAQ

TODO

Code Snippets

This is a collection of code snippets and scripts that may
be used for copy/paste or quick references.

Top up account from the Faucet

Code to programmatically top-up an account using the Faucet [https://testnet.faucet.aepps.com]

def top_up_account(account_address):

 print(f"top up account {account_address} using the testnet.faucet.aepps.com app")
 r = requests.post(f"https://testnet.faucet.aepps.com/account/{account_address}").json()
 tx_hash = r.get("tx_hash")
 balance = utils.format_amount(r.get("balance"))
 print(f"account {account_address} has now a balance of {balance}")
 print(f"faucet transaction hash {tx_hash}")

Generate multiple accounts

The following is a command line tool to generate multiple accounts
and to export the accounts secret/public keys.
Useful for testing

#!/usr/bin/env python
import argparse
import json
from aeternity.signing import Account

"""
Example app to deal with common dev issues:
- export secret/public key from a keystore
- generate a number of accounts to be used
"""

max number of account to generate
MAX_N_ACCOUNTS = 1000

def cmd_export(args):
 try:
 a = Account.from_keystore(args.keystore_path, args.password)
 print(json.dumps(
 {
 "keystore": args.keystore_path,
 "secret_key": a.get_secret_key(),
 "address": a.get_address()
 }, indent=2))
 except Exception as e:
 print(f"Invalid keystore or password: {e}")

def cmd_generate(args):
 try:
 if args.n > MAX_N_ACCOUNTS:
 print(f"Max number of accounts to generate is {MAX_N_ACCOUNTS}, requested: {args.n}")
 accounts = []
 for i in range(args.n):
 a = Account.generate()
 accounts.append({
 "index": i,
 "secret_key": a.get_secret_key(),
 "address": a.get_address()
 })
 print(json.dumps(accounts, indent=2))
 except Exception as e:
 print(f"Generation error: {e}")

if __name__ == "__main__":
 commands = [
 {
 'name': 'export',
 'help': 'export the secret/public key of a encrypted keystore as plain text WARNING! THIS IS UNSAFE, USE FOR DEV ONLY',
 'target': cmd_export,
 'opts': [
 {
 "names": ["keystore_path"],
 "help": "the keystore to use export",
 },
 {
 "names": ["-p", "--password"],
 "help": "the keystore password (default blank)",
 "default": ""
 }
]
 },
 {
 'name': 'generate',
 'help': 'generate one or more accounts and print them on the stdout',
 'target': cmd_generate,
 'opts': [
 {
 "names": ["-n"],
 "help": "number of accounts to generate (default 10)",
 "default": 10,
 }
]
 }
]
 parser = argparse.ArgumentParser()
 subparsers = parser.add_subparsers()
 subparsers.required = True
 subparsers.dest = 'command'
 # register all the commands
 for c in commands:
 subparser = subparsers.add_parser(c['name'], help=c['help'])
 subparser.set_defaults(func=c['target'])
 # add the sub arguments
 for sa in c.get('opts', []):
 subparser.add_argument(*sa['names'],
 help=sa['help'],
 action=sa.get('action'),
 default=sa.get('default'))

 # parse the arguments
 args = parser.parse_args()
 # call the function
 args.func(args)

Index

 _
 | A
 | B
 | C
 | G
 | N
 | S
 | T
 | V
 | W

_

 	
 	__init__() (aeternity.node.Config method)

A

 	
 	account_basic_to_ga() (aeternity.node.NodeClient method)

B

 	
 	broadcast_transaction() (aeternity.node.NodeClient method)

C

 	
 	compute_absolute_ttl() (aeternity.node.NodeClient method)

 	
 	Config (class in aeternity.node)

G

 	
 	get_account() (aeternity.node.NodeClient method)

 	get_balance() (aeternity.node.NodeClient method)

 	get_block_by_hash() (aeternity.node.NodeClient method)

 	get_consensus_protocol_version() (aeternity.node.NodeClient method)

 	
 	get_next_nonce() (aeternity.node.NodeClient method)

 	get_signature() (aeternity.transactions.TxObject method)

 	get_signatures() (aeternity.transactions.TxObject method)

 	get_top_block() (aeternity.node.NodeClient method)

 	get_vm_abi_versions() (aeternity.node.NodeClient method)

N

 	
 	NodeClient (class in aeternity.node)

S

 	
 	sign_transaction() (aeternity.node.NodeClient method)

 	
 	spend() (aeternity.node.NodeClient method)

T

 	
 	transfer_funds() (aeternity.node.NodeClient method)

 	
 	TxObject (class in aeternity.transactions)

V

 	
 	verify() (aeternity.node.NodeClient method)

W

 	
 	wait_for_confirmation() (aeternity.node.NodeClient method)

 	
 	wait_for_transaction() (aeternity.node.NodeClient method)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Aeternty Python SDK Documentation (aepp-sdk)

_static/comment-bright.png

_static/ajax-loader.gif

